
1

QJBrowser: A Query-Based Browser Model
Rajeswari Rajagopalan and Kris De Volder

The Univerisity of British Columbia
201-2366 Main Mall

Vancouver BC, V6T 1Z4
+1(604)8221209

{kdvolder,raji}@cs.ubc.ca

ABSTRACT
Many development tasks are not local to a single modular
component of a system but involve changes across many
different modules. To carry out such a task a developer needs
to understand many different kinds of relationships that exist
between different parts of their code-base. In this paper we
present QJBrowser, a query-based browser tool. Using
QJBrowser, a developer can dynamically create many different
kinds of browsers that select and organize elements of a code
base in terms of many different kinds of criteria and semantic
or structural relationships. Compared to state-of-the-art
integrated development tools, that typically come with a
limited set of built-in code browsers, our query-based browser
model offers a much more dynamic and flexible way to browse
code. On the one hand, this allows developers to explore the
code base more directly in function of their immediate needs
to explore specific relationships between specific parts of their
code. On the other hand, the browser model enables the
definition of code base specific browsers that reveal more
high-level, code-base specific relationships and concepts
which would otherwise be hard to discover in the code.

Keywords
Programming environments, multi-dimensional separation of
concerns, aspect orientation, crosscutting, source code
querying, code browsing.

1. INTRODUCTION
Many tasks developers face on a daily basis cut across the
modularity of the system and involve exploration and changes
across many different parts of the code base. Such tasks are
said to involve crosscutting concerns. Tasks involving
crosscutting concerns are hard because they require the
developer to understand a complex web of relationships that
exists between scattered elements of the code base. A good
code browsers indirectly assists a developer to deal with these
kinds of tasks. Code browsers organize the elements of a code
base in several different ways, providing a developer with
different ways to view and navigate a code base in terms of
different structural and semantic relationships induced by the
programming language’s semantics. For example, a modern
Java IDE might provide a developer with a package browser, a
class hierarchy browser and include embedded within the
source code editor. In this way an IDE helps a developer to
navigate and explore a code based more effectively. Indirectly
this improves the developer’s ability to deal with crosscutting
concerns in the code.

In this paper we present a source code browsing tool called
QJBrowser. QJBrowser is intended to further exploit the idea
that various types of code browsers can indirectly support

developers to deal with crosscutting concerns. The
construction of our prototype was motivated by the following
considerations:

1. The number of different code browsers developers
can use in an IDE is limited by what the IDE
developers have chosen to provide. Consequently, a
specific code browser typically provides a specific
type of organizational view which provides specific
navigational pathways and reveals specific kinds of
relationships between elements of the code base (e.g.
inheritance between classes for a class hierarchy
browser).

2. In principle, more types of browsers could be
supported by IDE developers. However, there is a
practical limit on the number of browsing tools that
can be developed and shipped with an IDE. Firstly
because building a new tool for each potentially
interesting view is very costly and impractical.
Secondly because every added tool adds to the
overall complexity of the IDE.

3. There is no obvious limit to the number of kinds of
browsers that developers may find useful at one time
or another. Different kinds of properties and
relationships can be used for organizing elements in
a browser (e.g. method names, static types, exception
flow, inheritance, method calls, etc.) Many of these
can be used in combination leading to a
combinatorial explosion of potentially useful code
browsers. In section 3.1 we will show an example that
illustrates the idea of a combinatorial explosion of
useful browsers.

4. Views that are specific to an application, a library, a
framework, a software development company etc. can
be very useful. For example, a browser that is aware of
the naming conventions used within a specific
framework could organize code base elements in
terms of concepts and relationships that are specific
to that particular framework. It would be hard to
build such code-base-specific browsers into a general
purpose IDE.

All of the above considerations inspired us to believe that an
environment offering a tool that allows developers to flexibly
define their own browsers would further enhance the way that
integrated development environments already support
developers indirectly to deal with crosscutting concerns.

A key issue in the design of such a tool is the trade-off
between flexibility and simplicity. An effective tool offers a
browser definition mechanism that is conceptually simple and,
at the same time, flexible enough to allow the creation of broad
set of useful browsers. QJBrowser establishes a good trade-off

2

between the two. In QJBrowser, hierarchically organized
browser views are defined by means of queries against the code
base. A query determines what elements will be shown by the
browser as well as the specific relationships and properties
that will be used to organize them. This mechanism i s
conceptually simple and at the same time flexible. It provides
a cost-effective way to define new views. The cost of defining a
new view involves little more than the formulation of a query.

The rest of the paper is organized as follows. In the next
section (section 2), we introduce QJBrowser and describe its
underlying ideas using a single concrete example. In section 3,
we present more examples that highlight the utility of
QJBrowser. Section 4 describes some preliminary experience
using the tool on a small development task and section 5
compares the tool to other similar work. Section 6 outlines the
limitations of the tool and presents some ideas for future work.
Finally, section 7 summarizes the paper.

2. QJBROWSER
QJBrowser, short for “Query Java Browser”, is a proof-of-
concept prototype. Presently, QJBrowser is implemented in
Java and supports two query languages, namely TyRuBa
[19][20] and Sicstus Prolog [17], both of which are based on
first-order predicate logic. We limit the discussion in this
paper to Sicstus Prolog, which is a commercial implementation
of standard Prolog.

Strictly speaking, QJBrowser is not actually a browser, but is a
tool, which provides mechanisms that allows users to create
their own browsers. The definition of a browser consists of two
parts:

1. A selection criterion, which determines what
elements are part of the browser’s view. The selection
criterion is a query that is executed against a source
model. The source model is a suitable representation

of the source code that can be queried by an
expression in some kind of query language.

2. An organization criterion, which specifies how to
organize the query results in the browser.

2.1 EXAMPLE: EXCEPTION HANDLER BROWSER
Before discussing the selection criterion and the organization
criterion in more detail, we present a concrete example of how
the tool works and how it can be used to define useful
browsers. This example concerns exception handling which i s
notorious for being difficult to manage in Java [16], partly
because of its crosscutting nature [13]. We will introduce
QJBrowser’s user interface, and show how a developer can use
it to define a browser that allows her to conveniently view the
methods in her system that handle certain exceptions. Without
such a tool, finding out where a particular exception i s
handled would require laborious exploration of the source
code.

QJBrowser’s user interface presents a developer with a dialog
box from which it is possible to launch different browsers by
inputting the parameters that define it. A screenshot of the
QJBrowser tool is shown in Figure 1.1. The textbox captioned
“Query” is where the query representing the selection-
criterion is entered. The entry in the box named “Variables of
interest” represents the organization criterion. It determines
how the query results will be organized in a tree; we will
explain the rationale behind representing query results as trees
later. By clicking in the tree view, the developer can expand or
collapse nodes. By double-clicking on a node, she can open a
source editor with the cursor positioned near the
corresponding code element, (provided the node has source
code associated with it). To assist the developer in composing
queries, QJBrowser provides a menu from which useful
expressions can be selected and appended to the query box.

Figure 1.1: QJBrowser

3

In our example, the developer is interested in finding out
where certain exceptions are handled in the code.
Unfortunately, the exact location of the catch statements in
the program is not explicit in the current version of the tool’s
source model. However, the developer realizes that methods
where exceptions get handled can nevertheless be deduced by
correlating the static callgraph information with information
from exception declarations in method signatures, both of
which are stored in the source model. The developer enters the
following Prolog query in the ``Query box'':

exception(ThrowMethod,XCeption),
callinfo(CatchMethod,ThrowMethod,_),
\+(exception(CatchMethod,XCeption))

For a reader unfamiliar with Prolog, this may require a little bit
of explanation. The identifiers starting with upper case letters
(ThrowMethod, XCeption, etc.) are variables, which will be
bound to values as a result of query execution. A “,” stands for
logical conjunction and a “\+” stands for logical negation.

Thus, this query will find all possible combinations of values
for the variables ThrowMethod, CatchMethod and
XCeption such that ThrowMethod is a method that throws
the exception XCeption, and CatchMethod is a method that
calls ThrowMethod but does not itself declare throwing
XCeption. In other words, CatchMethod will be bound to
methods where exceptions disappear from the static call graph.
These are methods where those exceptions are handled in the
system.1

In the “Variables of interest box” the developer enters a list of
the query variables she is interested in. This constitutes the
organization criterion for the browser. The order in which the
variables are entered determines how different elements will be
organized in the resulting browser. For example entering a list
XCeption,CatchMethod will result in a browser that
categorizes methods according to the exceptions they handle
(shown in Figure 2.1).

Figure 2.1: Exception Browser - Flavor 1

On the other hand, entering CatchMethod,XCeption as the
organization criterion, categorizes exceptions according to the
methods in which they are caught (shown in Figure 2.2).

1 For the sake of simplicity, this example does not take into

account the inheritance relationships that may exist between
exceptions. The query could be elaborated using a subtype
predicate to make it more precise.

Figure 2.2: Exception Browser - Flavor 2

2.2 SELECTION CRITERION
The selection criterion is defined as a query that is run against
the source model. QJBrowser's source model consists of logic
facts extracted from the source code by a static analysis tool.
Our current implementation uses a modified version of the
AspectJ type checker for discovering simple static
information, such as inheritance relationships, calling
dependencies, etc. Table 2.1 gives an overview of primitive
queries that are supported by the current implementation of
the source model.

Note that the table only lists the primitive queries, which can
be used to compose more complex derived queries using
standard Prolog syntax for logic conjunction, disjunction and
negation. An example of a composite query was given in the
previous section. We will give one more example here.
Suppose that we want to find all exceptions that are explicitly
propagated by methods of the class, testpackage.Foo. We
could get this information using the following query:

method(FooMethod,’testpackage.Foo’),
exception(FooMethod,FooExc)

The query is composed of two parts combined by a logic
conjunction (denoted by a “,”). Notice how the first part is a
query derived from, but not identical to, the query format
method(Met,Cls), as given by the second entry in Table 2.1.
This query is more specific than the one listed in the table,
because it has the name of a particular class rather than a logic
variable as its second parameter. This query will therefore find
only the methods that are declared in the class
‘testpackage.Foo’.

This example illustrates a general principle of Prolog
expressions: all the entries in the table can be used in multiple
ways, depending on whether each one of its parameters i s
specific or not. For example a subtype query can be used in
four different ways: 1) to find all super types of a specific type.
2) to find all subtypes of a specific type 3) to find all pair-
wise combinations of a super type and a subtype; and 4) to test
whether a certain type is a subtype of another specific type.
Each of these four “modes” of the subtype predicate can be
used in the composition of a more complex query.

Primitive Query
Format

Description

class(Cls) Find all classes Cls declared in
the system.

method(Met,Cls) Find all pairs Met,Cls where Cls
is a class (or interface) declared in
the system and Met is a method
decelerated in that class.

4

Primitive Query
Format

Description

decelerated in that class.

exception(Met,Exc
)

Find all pairs Met,Exc where Met
is a method declaration in the
system and Exc is an exception
declared to be thrown by Met.

callinfo(Caller,
Callee,Line)

Find all pairs Caller,Callee
where Caller is a method declared
in the system and Callee is a
method called by Caller
(according to the static call
graph). Additionally, Line will
be bound to a reference to the
actual source-code line where the
call occurs.

member(Mem,Cls) Find all pairs Mem,Cls where Cls
is a class declared in the system
and Mem is a member (variable,
method or constructor)
decelerated in that class.

subtype(Sub,Sup) Find all pairs Sub,Sup of class or
interface types declared in the
system, such that Sub is a
subtype of Sup.

Modifier(Dec,Mod) Find all pairs Dec,Mod where Dec
is a declaration (for a class,
interface, method, constructor or
variable) in the system and Mod
is a modifier (public, private,
protected, …) attached to that
declaration.

shortname(Dec,Nam
)

Find all pairs of Dec,Name where
Dec is a declaration (for a class,
interface, method, constructor or
variable) in the system and Nam i s
the short name for the declared
entity: the unqualified name for a
class or interface or a field or the
selector name for a method.

constructor(Met,
Cls)

Find all pairs Met,Cls where Cls
is a class declaration in the
system and Met is a constructor
method declaration.

type(Fld,Typ) Find all pairs Fld,Typ where Fld
is a field declaration in the
system and Typ is the declared
type of Fld.

callgraph(StartMe
thod,CalledList)

Finds a list of methods
CalledList such that each
method in the list is transitively
reachable from the method
StartMethod.

Table 2.1: Some primitive queries supported by the source
model

2.3 ORGANIZATION CRITERION
The organization criterion is an ordered list of variables
occurring in the selection criterion. The idea underlying the
organization criterion is that it defines a way to project a
multi-dimensional space that models the results of executing
the selection-criterion query, onto a tree. Because this concept
is hard to explain in abstract terms, we will explain it in terms
of the exception browser example given in section 2.1.

Typically, executing a logic query produces a set of solutions.
Each solution in the set consists of bindings for the variables
in the query. In our example, there were three variables in the
query: ThrowMethod, CatchMethod and XCeption. Every
solution to the query will bind a reference to a method to
ThrowMethod, and a reference to another method to
CatchMethod. It will also bind a reference to an exception to
XCeption. Thus, we can think of each solution as a 3-tuple
composed of three references: two to methods and one to an
exception. The query results can thus be represented as points
in a three dimensional space and each one of the variables
corresponds to an axis or dimension of that space.

In our example, we were only interested in two out of the three
variables: CatchMethod and XCeption. By omitting one of
the variables from the organization criterion we are implicitly
reducing the dimensionality of the result space from 3 to 2.
Now, we just have tuples of CatchMethod and XCeption,
which can be thought of as a set of points in a two-
dimensional space. On one axis, we plot all possible values for
the variable XCeption. On the other axis, we plot all possible
values for the variable CatchMethod. A point with
coordinates (CatchMethod-a,XCeption-x) is marked, if the
method CatchMethod-a handles exception XCeption-x.

As our example shows, in principle, neither of the axes is more
important than the other. However, for projecting the result
space onto a tree, the user specifies an explicit order on them.
This order defines how the units on the axes are categorized in
the tree. For example, considering dimensions X and Y, if the
order imposed on them is (Y,X), then the units on X-axis are
categorized according to the units on Y-axis. Similarly, if the
order on the axes is (X,Y), then the units on the Y-axis are
categorized according to the units on the X-axis.

It is evident from Figure 2.1 and Figure 2.2 that, even though
the same data is being displayed, changing the order of the
variables changes the shape of the tree dramatically. The actual
points in the result space that can be reached by navigating the
tree are the same, but the access paths differ. We can think of
alternative projections as a way to look at the query results
from a different perspective. Note that, in our exception
example, the perspectives in both Figure 2.1 and Figure 2.2 are
useful. Each one reveals different kinds of information more
clearly. In Figure 2.1, it is easy to find out all places where a
particular exception is being handled in the system but it i s
not easy to find out a list of exceptions that are handled by a
particular method. The latter is more easily found in the
browser in Figure 2.2.

5

3. EXAMPLES
In this section, we will present two sets of examples that
illustrate the usefulness of QJBrowser. The first set of
examples shows general-purpose views. The second set of
examples shows how we can make use of code-base-specific
knowledge to define code-base-specific views.

3.1 GENERAL-PURPOSE BROWSERS
The examples in this section show how we can use many kinds
of information to define general-purpose views on the code
base. We call these views “general-purpose” because their
definitions do not require code-base-specific knowledge and
therefore they are potentially useful in browsing any kind of
code base.

3.1.1 A CONVENTIONAL CLASS BROWSER
Our first example is the definition of a conventional class
browser. It offers a view typical of any ordinary class browser,
with packages, classes and members displayed in a hierarchy,
in that order.

Selection:
class(Class,Package),member(Member,Class)

Organization : Package, Class, Member

Figure 3.1: Conventional Class Browser

This class browser is an all-round tool, suitable for many
purposes, but not specifically attuned to the particularities of
a specific task or code base. In most IDEs, this is the only kind
that is available. With QJBrowser, in contrast, it is possible to
customize the class browser by editing its view definition. The
remaining examples in this paper will show, amongst others,
several customized class-browser-like views.

3.1.2 EXCEPTION BROWSERS
The exception browser discussed in the beginning of this
paper is only one of many similar browsers that can be defined
around the theme of exceptions. Our next example shows how
we can obtain a “family” of useful browsers by combining a
class-browser-like view with organization based on
exceptions. All browsers in this family share the same
selection criterion but have different organization criteria.

Selection:
class(Class,Package),member(Method,Class),
exception(Method,Exception).

There are many possible organization criteria for this selection
criterion, each defining a somewhat different browser. The total
number of possible browsers that can be obtained by selecting
different variables and reordering them is:

1
4

Ê

Ë
Á

ˆ

¯
˜ .1!+

2
4

Ê

Ë
Á

ˆ

¯
˜ .2!+

3
4

Ê

Ë
Á

ˆ

¯
˜ .3!+

4
4

Ê

Ë
Á

ˆ

¯
˜ .4!= 64

It should be noted that not all 64 variations are (equally)
useful. For one thing, there is a natural order on the variables
Package, Class and Method. Putting these variables in a
different order does not result in a very useful view, because i t
will not impose any meaningful organization. It is worth
pointing out here the distinction between a method and its
name. We use the word “method” to refer to the identity of a
specific method declaration in the code. So, while it may be
useful to organize classes by the names of the methods they
contain, organizing classes by their actual methods (as
opposed to method names) is not very useful since a method
declaration is only part of a single class declaration. In a way,
the Package, Class and Method variables do not constitute
orthogonal dimensions because there is a functional
correlation between them: each method belongs to only a
single class, and each class to single package. The Exception
dimension however is orthogonal to Package, Class and
Method dimensions in the sense that given exception can be
thrown in many different packages, classes and methods. This
means that in the organization criterion Exception can be
positioned independently of Package, Class and Method.
Taking these and some other considerations into account we
have reduced the number of actually useful views to the 13
shown in Table 3.1.

Organization
#

Useful organization criteria

1.

2.

3.

4.

E P C M

P E C M

P C E M

P C M E

5.

6.

7.

8.

9.

10.

11.

12.

13.

E P M

E C M

P E M

P M E

C E M

C M E

E M

C E

M E

Table 3.1: A list of useful organization criteria for
class(C,P),member(M,C),

exception(M,E).
We will only explicitly discuss the first 4 variations, which
use all the variables in the query. These four are presumably
the most useful ones. They are also characteristic of the others.
Each one of the four resulting browsers differs from the others
only in the way it shows how propagation of exceptions
crosscuts the organization of methods into classes and
packages.

E = Exception

P= Package

C= Class

M= Method

6

Organization 1 lists all exceptions propagated in the system.
Opening an exception node will reveal a structure similar to
the conventional class browser except that it only shows
packages, classes and methods in which that exception i s
declared to be thrown. This browser allows the developer to
quickly find all the places where a particular exception i s
thrown throughout the system.

Whereas organization 1 shows crosscutting of exceptions at a
systemic level, organization 2 shows crosscutting of
exceptions at the level of packages. On opening a package
node, a list of exceptions declared to be thrown in that package
is shown. Opening an exception node reveals classes and
methods belonging to the corresponding package, much like
an ordinary class browser. However, only those classes and
methods in the package that propagate the exception
corresponding to the expanded node are revealed.

Similarly, organization 3 shows crosscutting of exceptions at
the level of classes. Organization 4 may, at first, appear to be
less useful because it requires the developer to descend all the
way to the level of individual methods to find out what
exceptions are thrown. However, it does provide a useful
exception-oriented view on classes and packages because i t
only shows a “filtered” package-class-member hierarchy where
entities that do not propagate any exception are culled out.

3.2 CODE-BASE-SPECIFIC BROWSERS
In this section we discuss examples that highlight the utility
of QJBrowser in allowing developers to define browsers, which
are specific to a particular code base. In other words, in these
examples, a browser’s definition is inspired by some specific
knowledge, which is closely linked to a particular code base.
For this purpose, we shall consider a Java GUI framework for
graphics, called JHotDraw [11]. JHotDraw provides several
elements such as Tools, Menus and Applications for drawing
and manipulating different Figures. The package includes
some sample applications/applets that use these elements for
different purposes, for example, a Network editor, a PERT
editor etc.

Naturally, the aforementioned concepts — application, tool,
menu, figure, etc. — and the relationships between them also
play an important role in the JHotDraw code base. Specific bits
of knowledge about how these concepts are implemented and
how important relationships between them are expressed in the
code will be the basis for the examples in this section.

3.2.1 TOOLS BROWSER
The first browser shows all the “tools” in JHotDraw. Every tool
in JHotDraw implements an interface called Tool, either
directly or indirectly. This knowledge about how JHotDraw
tools are implemented can be easily translated into a Prolog
query for finding all tool classes. The resulting query
constitutes the selection criterion for our first simple browser:

Selection:
shortname(ToolInterface,’Tool’),
subtype(Tool,ToolInterface),class(Tool).

Organization: Tool

Figure 3.2: Tool Browser

Because the notion of what constitutes a tool is a generally
useful concept in JHotDraw’s code base, and because tools will
also play a role in the other JHotDraw-specific browsers shown
in the remainder of this section, we will make a reusable
abstraction that defines it. We can use Prolog’s abstraction
mechanism, namely rules, for this purpose. To this end, we
define the following rule:

tool(X) :-
 shortname(ToolInterface,’Tool’),
 subtype(X,ToolInterface),class(X).

After defining this rule, we can use the query tool(X) to find
all classes representing JHotDraw tools (see Figure 3.2). This
defined abstraction constitutes a user defined extension to the
query language, which is very useful because it improves the
readability of the queries as well as the ease with which queries
can be composed.

3.2.2 TOOL CREATION BROWSER
To explore the tools actually created in the sample
applications/applets, in addition to knowing how tools are
implemented in the package, we must also know how and
where they are instantiated. By convention, JHotDraw
applications/applets have a method usually called
“createTools” which instantiates the tools to be used in that
application/applet. We can define a rule to locate all
createTools methods in the code, as follows:

createMethod(Method,Application) :-
shortname(Method,’createTools’),
method(Method,Application).

The instantiation is accomplished by simply invoking the
constructor of the corresponding tools. We use this useful bit
of knowledge, in conjunction with the rule defined above, to
add another rule that defines the relationship between an
application/applet and the tools it creates.

createsTool (Application,CreatedTool,Line) :-
tool(CreatedTool),
createMethod(CreateMethod,Application),
constructor(CreatedTool,Cons),
callinfo(CreateMethod,Cons,Line).

We can then use this rule, as explained below, to define a
“tool-creation” browser (Figure 3.3 and Figure 3.4).

Selection:
createsTool(Application,Tool,Line)

Organization: Application, Tool, Line
Figure 3.3 shows the corresponding browser. It shows a
hierarchy that lists the tools created by each
application/applet in the code base. The last variable, Line,

7

will appear as a hyperlink to the precise location in the code
where the tool’s constructor is being called. This view makes i t
easy to find out all the tools created by a particular
application/applet in addition to the precise location of the
tool creation call in the corresponding application/applet.

Figure 3.3: Tool Creation Browser – Flavor 1

Swapping the order of the first two variables in the
organization criterion provides another useful view using the
same query. This view is complementary to the previous one,
making it easy to find out all the applications/applets that
create a particular tool.

Organization: Tool, Application, Line

Figure 3.4: Tool Creation Browser - Flavor 2

3.2.3 FIGURE BROWSERS
In this example, we define browsers around yet another
JHotDraw-specific concept, namely “Figure”. Figures are
graphical objects that can be drawn and manipulated in
applications/applets using appropriate tools. We want to
produce different views that show the relationships between
figures, tools and applications. To define an appropriate
selection criterion, we need to make explicit some knowledge
about the specifics of the JHotDraw’s code base, by defining
rules about them. First of all, there is the knowledge that
classes representing “figures” are identifiable because they
implement an interface called Figure. We express this
knowledge as a rule:

figure(X):-
 shortname(Fig,’Figure’),
 subtype(X,Fig),class(X).

The connection between a figure and a tool that operates on the
figure is also apparent in the code base. All tool classes in the
code base encapsulate the figures that they can manipulate, as

their data members. We turn this knowledge into the following
rule:

toolManipulates(Tool,Figure) :-
tool(Tool),field(Field,Tool),figure(Figure),
type(Field,Figure).

We can now define several interesting views, which would
reveal the figures used by the different applications/applets.
The following selection criterion is the basis for several useful
variations of “Figure Browser”. We only show one of the
possible variations here.

Selection:
createsTool(Application,Tool,Line),
toolManipulates(Tool,Fig)

Organization: Application, Figure, Tool

Figure 3.5: Figure Browser

3.3 EXAMPLES SUMMARY
The examples described in the preceding two sections
illustrate some interesting points.

The first example illustrates how projecting two or more
orthogonal organizational dimensions onto a tree can produce
a family of useful views. Each view shows a different
perspective on how elements in the different dimensions relate
to one another. A combinatorial explosion of useful views
results because there are many kinds of information that can be
used to define organization along different dimensions, for
example: packages, classes, method names, exceptions, calling
dependencies, static type signatures, implemented interfaces,
etc.

The second example illustrates how particularly interesting
browsers can be defined using application-dependent
knowledge. Such browsers organize specific kinds of code
units based on high-level relationships between code base
specific concepts (in the example: relationships between
Applications, Tools and Figures). Since these relationships are
often expressed in scattered places of the code base they would
be rather hard to discover otherwise.

4. PRELIMINARY EXPERIENCE
In the previous sections, we discussed the utility of QJBrowser
using examples. In this section, we discuss some preliminary
experience using QJBrowser.

QJBrowser is a prototype that has not yet been used for any
realistic software development. So it is too early to make any
definite claims about its practical usability. However, to get
some preliminary indications of the practical viability of our

8

approach we tried performing two small development tasks on
some software packages that we downloaded from the Internet.

While conducting the tasks, we took notes about the steps
taken, the queries used and the reason for formulating those
queries.

In the first task, our goal was to gain some general
understanding of the structure and organization of JHotDraw
[11], a Java GUI framework for technical and structured
graphics. JHotDraw consists of 148 classes, 490 methods and a
total of approximately 16000 lines of code. We chose
JHotDraw because its code is known to rely heavily on some
well-known design patterns [6]. We considered it an ideal test
case because, despite its use of a number of good design
principles, it is complex and understanding it requires the
developer to identify and understand the various relationships
that exist among the scattered elements in the code.

The second task was more directed. It involved making a
change to the QJBrowser package itself by replacing its simple
editor with a more sophisticated one downloaded from the
Internet, called JE. JE has 236 classes, 786 methods and a total
of approximately 13000 lines of code. This task consisted of
changing JE appropriately to make it useable as an editor for
QJBrowser. An editor for QJBrowser would have to provide a
way to reify a file that was edited, so that the internal database
maintained by QJBrowser can be kept up-to-date. The most
essential part of the change task was to find out how to add a
menu item in the editor to invoke this function. In addition,
some parts of QJBrowser had to be changed to unplug the old
editor and plug in JE.

For both tasks, we began by running the application and
studying its external behavior before examining the source
code. The next step was to search for the application entry
points using a simple logic query for finding methods named
main. Subsequently, we elaborated this query to define a view
showing all methods that were transitively reachable (using
the callgraph predicate) from the respective main methods2.

From this point on, both experiments started to diverge.
Nevertheless, in both cases, there was a tendency to formulate
directed queries inspired by the results of the previous queries
and a desire to further explore specific aspects in more detail.

Overall, we had a relatively positive experience with the tool
although we did notice some usability issues with it.

Some things that were experienced as positive were:

• The ability to obtain different perspectives on query
results by reordering variables: In the first task, we
wanted to get an overview of the class hierarchy in
JHotDraw. For this purpose, we used the primitive query
subtype(C,P) and the two possible organization
criteria, namely C,P and P,C, resulting in two different
perspectives on the system. While the former perspective
helped us in identifying the ancestors of particular
classes, the latter helped us in getting a more
conventional inheritance view.

2 Because the current version of the tool does not support the

definition of “recursive” browsers, the callgraph was
collapsed into a single level of the tree. See also section 6
for more discussion about this limitation of the browser
model.

• The ability to formulate specific queries inspired by the
preceding results: Upon inspecting our notes, we found
that we often formulated new queries to further explore
some pivotal elements revealed by the preceding query.
For example, from the class-hierarchy view described
above, we found that only one class in JHotDraw, namely
CommandMenu, derived from JMenu, the class that
represents menu in Java’s swing package. This led us to
formulate more queries to explore the role of
CommandMenu further, which gave us an overall
understanding of the way menus are implemented in
JHotDraw.

• The ability to repeatedly edit the selection criterion to
reveal more or less information. For example, in the
second task, in order to update QJBrowser’s source model
after editing a source file, we needed to get at the reference
of the “file being edited”, as maintained by the editor. By
means of queries, we discovered that JE maintains the
current file as a field, namely CurrentFile in the class
EditorFrame. Our next immediate goal was to find all
public methods that return this field. First, we queried for
all the methods that accessed the field. The resulting view
was not instantly helpful because it showed all the
methods that accessed the field and not just the ones that
returned it. To reduce the number of results, we refined
the query to match only those methods that returned a
type that was equivalent to that of CurrentFile. Finally,
we refined the query even further because we were only
interested in methods that had public access.

One of the problems that we noted with the tool was that,
although the tool offers some support for composing queries
by providing useful query fragments in a pop-up menu,
composing queries that had the desired effect was not always
easy and required some trial-and-error. Another issue
encountered was related to the performance of the query
engine. The execution of a query can take anywhere from a
fraction of a second to a few minutes, depending on the
complexity of the query and the number of results. Sometimes
we lost patience waiting for all the results to be computed.
Rather than wait for query execution to complete we would
abort its execution and inspect a partially generated view.

5. RELATED WORK
5.1 QUERY-BASED TOOLS
In this section, we survey some approaches and systems that,
like QJBrowser, have an expressive query language as an
essential component in assisting developers to perform
software engineering tasks. Of all the tools discussed here,
some explicitly point out the usefulness of a query-based
approach in support of aspects and multi-dimensional
separation of concerns.

SOUL [21] is a logic meta-language that was developed for
querying a Smalltalk image. ASTLOG [4] is a similar system
developed for querying C and C++ abstract syntax trees. SOUL
and ASTLOG are both query languages, whereas QJBrowser i s
not a query language, but uses a query language as a
component to define navigable trees.

Coven [1] and the Gwydion [18] project provide a query
mechanism for defining groups of editable code fragments. In
Coven these are called “Virtual Source Files” and in the
Gwydion project, they are called “Sheets”. Both names refer to

9

a similar concept: a “virtual” set of related code fragments
identified by a query. In these approaches, queries are used as a
mechanism for selecting flat sets of code units, unlike the
hierarchically organized results in QJBrowser.

GraphLog [3] is a logic query language in which queries and
query results are represented as directed graphs. This eases the
formulation of queries. GraphLog represents query results as
directed graphs but does not provide the kind of support for
viewing results from different angles by specifying
organization criteria. A graphical query language like
GraphLog could potentially be used in QJBrowser, instead of
Prolog or TyRuBa, to facilitate the composition of queries.

Semantic Visualization Tool (SVT) [7] is a framework
providing primitives for visualizing and browsing any kind of
data present in program databases. Conceptually, SVT is by far
the most similar to QJBrowser. In SVT, navigation and
visualization primitives are defined as Prolog predicates. The
program source code and runtime data are represented as
Prolog facts in files. Data queries are used to generate specific
views. Many of the underlying ideas in QJBrowser and SVT are
highly similar. However, QJBrowser and SVT make different
kinds of tradeoffs in terms of the degree of flexibility and ease
of defining tools/views. SVT is more accurately characterized
as an implementation platform for all kinds of visualization
tools. Because SVT has a different goal than QJBrowser i t
offers much greater flexibility in the definition of a tool.
However, defining a SVT tool requires considerably more
effort than defining a QJBrowser view. Whereas QJBrowser just
requires a selection criterion and an organization criterion, the
configuration of a SVT tool involves defining views, view
contents, view contexts, visual components, menus, actions,
reactions, visual objects and content types.

5.2 ASPECT-ORIENTED TOOLS
In this section, we discuss how QJBrowser relates to some
other research prototypes that were specifically designed to
support crosscutting concerns, aspects and multi-dimensional
separation of concerns.

HyperJ[14] supports the notion of a multi-dimensional
concern space. HyperJ’s notion of multi-dimensionality i s
highly similar to the multi-dimensionality of query results in
QJBrowser. HyperJ supports encapsulation and composition
of crosscutting modules called “hyperslices” and
“hypermodules” but only has limited support for dynamic
definition of hyperslices. QJBrowser, on the other hand, does
not support encapsulation and composition but supports very
dynamic definition of browser views.

Aspect Browser (AB) is a tool for assisting evolutionary
changes by making code relating to a global change feel like a
unified entity[8]. Although, this is also one of the goals of
QJBrowser, there are some differences in the way both these
tools are built and operate. First off, Aspect Browser uses a
much weaker query language based on lexical pattern
matching (like grep). Secondly AB visualizes query results
using a map metaphor. That is, the query results are
represented spatially in a map using a coloring scheme,
indexing, folding and zooming, a “You are here” pointer etc. In
QJBrowser, query results are represented as navigable trees
with collapsible nodes. Each representation has its own pros
and cons. However, no formal studies have been done to prove
the benefits of one representation over the other.

Aspect Mining Tool (AMT) [9] extends Aspect Browser’s query
language to include type-based queries in addition to lexical
matching. Although, it does not use an extensive map
metaphor like AB, it does use a coloring scheme similar to AB
to distinguish different concerns. QJBrowser differs from AMT
in the way it visualizes query results. Another difference i s
that QJBrowser offers a more flexible query language than
AMT. In addition, more kinds of information—such as calling
dependencies, field references, constructor calls, application-
specific semantics etc.—can be used in the queries.

Concern graphs [15] are used for abstracting the
implementation details of a concern and showing the
relationships among the different parts of a concern explicitly.
In QJBrowser developers define views of interest using a
flexible and expressive query language. In FEAT, developers
add individual code fragments to their concern one by one.
Both tools are to a large degree complementary in
functionality. Whereas QJBrowser has a more powerful query
language and allows intentional specification of
organizational views, FEAT supports an extensional
specification of individual concerns.

5.3 INTEGRATED DEVELOPMENT ENVIRONMENTS
Commercial IDEs such as VisualAge, Forte, JBuilder, etc.
typically have a limited set of tools, such as class browser,
package browser, class hierarchy browser etc. built in to them.
These tools offer useful views that are mostly in line with the
notion of modularity as defined by the supported
programming language. In comparison, QJBrowser offers much
greater flexibility and provides a way to define many different
kinds of crosscutting and non-crosscutting views.

Eclipse [5] is an open extensible IDE with API's for plugging
in a variety of development tools. Developers can build their
own extensions and tools and integrate them seamlessly with
the core IDE. To some extent, this allows them to customize the
environment. Nevertheless, it requires significant effort, since
the developers would have to build full-fledged plug-in tools
in accordance with Eclipse specifications. In comparison,
defining a view with QJBrowser merely requires formulating a
query.

Because Eclipse is an extensible development environment,
which comes with a high quality set of core Java development
tools, it is an interesting idea to develop QJBrowser itself as
an Eclipse plug-in. We are currently pursuing this idea and are
developing Eclipse plug-in version of QJBrowser.

6. LIMITATIONS AND FUTURE WORK
QJBrowser offers a very expressive general-purpose query
language. The disadvantage of this is that complex queries
may take a long time to compute. Optimizing the query engine
and building views more incrementally can improve the
responsiveness of the tool. The new prototype we are building
as an Eclipse plug-in will try to address some of these
performance issues.

It is not possible with the current tool to define recursive
browsers. For example a class hierarchy browser or a browser
which allows a user to recursively descend deeper and deeper
into a callgraph cannot be defined. This is a consequence of
the choice to keep the browser definition process as simple as
possible. Although it is possible to approximate recursive
browsers by “flattening” them in different ways, the definition
of recursive views would likely be a useful extension of the
tool. We are currently considering this for the new version. It

10

is not yet clear how to most easily support recursive browsers
and whether it would be worth the extra complications to the
browser-definition process.

Another limitation of QJBrowser’s current implementation i s
that the user has to be familiar with logic programming to
formulate queries. This requirement does not match well with
the typical skills of an object-oriented software developer. One
possible approach to alleviate the problem, could be to
investigate better GUI support for editing queries. Another
approach is to define a more intuitive syntax for logic queries,
for example, graphical syntax as in GraphLog[3]. A third
possibility is to look at non-logic query languages such as
SQL, which are typically more familiar to developers.

Another idea for future research concerns extending the range
of information that can be used in the query language. The
current source model includes only facts about the source code
that can be derived by simple static analysis. However, it can
extended easily to incorporate information from a variety of
other sources, such as information from dynamic analysis,
JavaDoc comments, version management tools etc.

Finally, practical experience using the tool is still limited. The
current implementation is only a prototype, and as such, it i s
of limited use in real software development settings. The
Eclipse version of the tool will try to address this issue and to
make it possible to conduct more realistic experiments and
user studies.

7. SUMMARY
In this paper, we presented QJBrowser, an early prototype of a
query-based browser tool that allows developers to
dynamically define their own browsers. The browser’s
hierarchical view is obtained by seeing the result of a logic
query as a multi-dimensional space, which can be projected
onto a tree in several different ways. The definition of a
browser consists of two parts: a query — the selection
criterion — and an ordered list of variables occurring in the
query — the organization criterion. Each variable can be
thought of as representing an organizational dimension. The
organization criterion defines how to combine multiple
organizational dimensions into a single hierarchical view.
When two or more orthogonal dimensions are involved,
changing the relative order of the corresponding variables in
the organization criterion will produce different useful
perspectives. We can think of this as looking at a query result
from a different angle.

The usefulness of a tool like QJBrowser was illustrated by
means of two sets of examples. These examples illustrated that
many kinds of information, including information derived
from code-base-specific knowledge, can be used to define
organizational structure. Because there are many kinds of
information that can be used (e.g. packages, classes, method
names, exceptions, static types, calling dependencies, object
creation, inheritance, etc.) and because many of them are
orthogonal to one another, the number of useful browsers that
can be defined is virtually unlimited.

Integrating a tool like QJBrowser would enhance the ability of
developers with crosscutting concerns in their code. Current
IDE’s indirectly support developers in dealing with
crosscutting concerns by providing them with a limited set of
good general purpose navigation and exploration tools.
QJBrowser would enhance this ability by providing a single
tool that can be used to dynamically define a large number

useful general-purpose as well as code-base specific browsers
with relative ease. This would enhance the IDE’s ability to
support developers in exploring the complex web of
relationships that exists between various scattered elements of
a code base.

8. ACKNOWLEDGMENTS
This work was supported by funds from the University of
British Columbia (UBC), Object Technology International
(OTI) and the National Science and Research Engineering
Council of Canada (NSERC). We thank Jonathan Sillito and
Gail Murphy for their insightful comments on a draft of this
paper. We thank our colleagues and fellow students for many
interesting discussions that have contributed to the
QJBrowser tool and to this paper.

9. REFERENCES
[1] M. C. Chu-Carroll and S. Sprenkle. in Proceedings of the

eighth international symposium on Foundations of
software engineering for twenty-first century applications
(November 2000), ACM SIGSOFT Software Engineering
Notes, Volume 25 Issue 6. ACM Press, 88-97.

[2] Siobhán Clarke and Robert J. Walker. "Separating
Crosscutting Concerns Across the Lifecycle: From
Composition Patterns to AspectJ and Hyper/J." Technical
report UBC-CS-TR-2001-05, Department of Computer
Science, University of British Columbia, Vancouver,
Canada, 23 May 2001.

[3] M. Consens and A. Mendelzon. GraphLog: A Visual
Formalism for Real Life Recursion. in Proceesings of
PODS, pages 404-416, 1990.

[4] R. F. Crew. ASTLOG: A language for examining abstract
syntax trees. in Proceedings of the First Conference on
Domain Specific Languages, pages 229–242, Oct. 1997.

[5] Eclipse Platform Technical Overview. Object Technology
International, Inc, July 2001.

[6] E. Gamma, R. Helm, R. Johnson and J. Vlissides. Design
Patterns: Elements of Reusable Object-Oriented Software.
Reading, MA: Addison-Wesley, 1995.

[7] Calum A. McK. Grant. Software Visualization In Prolog.
Ph.D Dissertation. Queens’ College, Cambridge. December
1999.

[8] W.G. Griswold, Y. Kato and J.J. Yuan. Aspect Browser:
Tool support for Managing Dispersed Aspects. First
Workshop on Multi-dimensional Separation of Concerns
in Object-oriented Systems, OOPSLA 1999.

[9] J. Hannemann and G. Kiczales. Overcoming the Prevalent
Decomposition of Legacy Code. Workshop on Advanced
Separation of Concerns at the International Conference on
Software Engineering (Toronto, 2001).

[10] W. Hürsch and C. V. Lopes. Separation of Concerns.
Northeastern University technical report NU-CCS-95-
03, Boston, February 1995.

[11] JHotDraw. http://www.jhotdraw.org/ .

[12] G. Kiczales, J. Lamping, A. Mendhekar, et al., Aspect-
Oriented Programming. in Proceedings of European

11

Conference on Object-Oriented Programming(ECOOP),
June 1997.

[13] C. V. Lopes and M. Lippert. A Study on Exception
Detection and Handling Using Aspect-Oriented
Programming. In Proceedings of 22nd International
Conference on Software Engineering. Limmerick, Ireland.
ACM Press. June 2000.

[14] H. Ossher and P. Tarr. Multi-Dimensional Separation of
Concerns using Hyperspaces. IBM Research Report
21452, April 1999.

[15] M. P. Robillard, G. C. Murphy. Concern Graphs: Finding
and Describing Concerns Using Structural Program
Dependencies. in Proceedings of ICSE 2002. (To appear).

[16] M. P. Robillard and G. C. Murphy. Designing Robust Java
Programs with Exceptions. in Proceedings of the eighth
international symposium on Foundations of software
engineering for twenty-first century applications
(November 2000). ACM SIGSOFT Software Engineering
Notes, Volume 25 Issue 6, pages 2-10, ACM Press, 2000.

[17] SICStus Prolog. http://www.sics.se/sicstus/ .

[18] R. Stockton and N. Kramer. The Sheets Hypercode Editor.
Technical Report 0820, CMU Department of Computer
Science, 1997

[19] K. De Volder. Type-Oriented Logic Meta Programming.
Ph.D Dissertation. Vrije Universiteit Brussel,
Programming Technology Lab, 1998.

[20] K. De Volder. TyRuBa. http://tyruba.sourceforge.net/ .

[21] R. Wuyts. Declarative Reasoning about the Structure of
Object-Oriented Systems. in Proceedings of TOOLS USA
'98. pages 112-124, IEEE Press, 1998.

